Prof. Dr. Horst Heck

Steckbrief

Prof. Dr. Horst Heck Dozent

  • Adresse Berner Fachhochschule
    Technik und Informatik
    Lehre
    Pestalozzistrasse 20
    3400 Burgdorf

Tätigkeiten

  • Lehre

  • Forschung

  • Stundenplanung Abteilungen E und M

Lehre

  • Elektrotechnik und Informationstechnologie

  • Diverse

  • Analysis

  • Lineare Algebra und Geometrie

  • Mathematik 1 (E)

  • Mathematik 2 (E)

  • Machine Learning

  • Numerical Methods (BME)

  • Maschinelles Sehen und Bildverarbeitung

  • Anwendungen von Matlab/Octave

Forschung

  • Mathematik

  • Bildverarbeitung

  • Hyperspectral Imaging

  • Maschinelles Lernen

  • Deep Learning

  • (Partielle) Differenzialgleichungen

  • Inverse Probleme

Lebenslauf

  • 2012- Professor für Mathematik Berner Fachhochschule
  • 2012 Professor für Analysis Universität Salzburg
  • 2005-2006 Research Fellow University of Washington
  • 2004-2005 JSPS Research Fellow Tohoku University
  • 2000-2012 Wissenschaftlicher Mitarbeiter TU Darmstadt
  • 2003-2007 Habilitation/Venia Legendi TU Darmstadt
  • 2000-2003 Dr. rer. nat. TU Darmstadt
  • 1994-2000 Diplom (dipl. math.) Universität Karlsruhe (heute KIT)
  • 1985-1992 Abitur Wilhelm Hausenstein Gymnasium

Projekte

  • SCCER FURIES, Digitalisation, "An Accurate Hybrid ML Model for Residential Electricity Load Profile and Local PV System Generation"

  • FrontRunner, Routenoptimierung bei der Abfallentsorgung, mit Stadt Burgdorf, SDSC, Brunata

  • Mikroklimas für nachhaltige Ökosysteme, mit Valère Martin (HAFL)

Publikationen

  • Heck, H., Schmidt, A. J., Schüpbach, E., Kuonen, F., Bacha, S., & Muntwyler, U. (2020). Optimising Own PV Consumption with PV Energy Yield Predictions from Machine Learning Algorithms and Weather Data. 37th European Photovoltaic Solar Energy Conference and Exhibition. https://doi.org/10.24451/arbor.13355

  • Choudhury, A.P.; Heck, H. Increasing stability for the inverse problem for the Schrödinger equation. Math Meth Appl Sci. 2018; 41: 606– 614. https://doi.org/10.1002/mma.4632

  • Choudhury, A. P., & Heck, H. (2017). Stability of the inverse boundary value problem for the biharmonic operator : Logarithmic estimates. (Vol. 25, Issue 2). de Gruyter. https://doi.org/10.24451/arbor.5841

  • Heck, H.; Wang, J.-N. Optimal stability estimate of the inverse boundary value problem by partial measurements, Rendiconti dell'Istituto di Matematica dell'Università di Trieste, 48, S. 369-383. Instituto di Matematica dell'Universita di Trieste 10.13137/2464-8728/13164, (2016)

  • Kuonen, F., Gfeller, D., Schott, T., Schüpbach, E., Heck, H., & Muntwyler, U. (2016). Calculation- and visualization-tool (CVT) for partial shading of photovoltaic systems. 32th European PV Solar Energy Conference and Exhibition. https://doi.org/10.24451/arbor.7702

  • Geissert, M.; Heck, H.; Trunk, Chr. H∞-calculus for a system of Laplace operators with mixed order boundary conditions, Discrete and Continuous Dynamical Systems - Series S, 6 5 1259- 1275, (2013).

  • Heck, H.; Kim, H.; Kozono, H., Weak solutions of the stationary Navier-Stokes equations for a viscous incompressible fluid past an obstacle. Math. Ann. 356 (2013), no. 2, 653–681.

  • Heck, H.; Kim, H.; Kozono, H., On the stationary Navier-Stokes flows around a rotating body. Manuscripta Math. 138 (2012), no. 3-4, 315–345.

  • Geissert, M., Heck, H., Hieber, M., & Sawada, O. (2012). Weak Neumann implies Stokes, Journal für die reine und angewandte Mathematik, 2012(669), 75-100. doi: https://doi.org/10.1515/CRELLE.2011.150

  • Geissert M., Heck H. (2011) A Remark on Maximal Regularity of the Stokes Equations. In: Escher J. et al. (eds) Parabolic Problems. Progress in Nonlinear Differential Equations and Their Applications, vol 80. Springer, Basel. https://doi.org/10.1007/978-3-0348-0075-4_14

  • Horst Heck, Gen Nakamura and Haibing Wang, Linear sampling method for identifying cavities in a heat conductor, 2012 Inverse Problems 28 075014

  • Heck, H., M. Hieber und K. Stavrakidis: L ∞ -estimates for parabolic systems with VMO-coefficients. Discrete Contin. Dyn. Syst. Ser. S, 3(2):299–309, 2010.

  • Geissert, M., H. Heck, M. Hieber und O. Sawada: Remarks on the L p -approach to the Stokes equation on unbounded domains. Discrete Contin. Dyn. Syst. Ser. S, 3(2):291–297, 2010.

  • Heck, H., H. Kim und H. Kozono: Stability of plane Couette flows with respect to small periodic perturbations. Nonlinear Anal., 71(9):3739–3758, 2009.

  • Heck, H.: Stability estimates for the inverse conductivity problem for less regular conductivities. Comm. Partial Differential Equations, 34(1-3):107–118, 2009.

  • Heck, H., X. Li und J.-N. Wang: Identification of viscosity in an incompressible fluid. Indiana Univ. Math. J., 56(5):2489–2510, 2007.

  • Heck, H., G. Uhlmann und J.-N. Wang: Reconstruction of obstacles immersed in an incompressible fluid. Inverse Probl. Imaging, 1(1):63–76, 2007.

  • Haller-Dintelmann, R., H. Heck und M. Hieber: L p -L q estimates for parabolic systems in non-divergence form with VMO coefficients. J. London Math. Soc. (2), 74(3):717–736, 2006.

  • Heck, H. und J.-N. Wang: Stability estimates for the inverse boundary value problem by partial Cauchy data. Inverse Problems, 22(5):1787–1796, 2006.

  • Geissert, M., H. Heck und M. Hieber: L p -theory of the Navier-Stokes flow in the exterior of a moving or rotating obstacle. J. Reine Angew. Math., 596:45–62, 2006.

  • Geißert, M., H. Heck und M. Hieber: On the equation div u = g and Bogovskiı̆’s operator in Sobolev spaces of negative order. In: Partial differential equations and functional analysis, Band 168 der Reihe Oper. Theory Adv. Appl., Seiten 113–121. Birkhäuser, Basel, 2006.

  • Geissert, M., H. Heck, M. Hieber und I. Wood: The Ornstein-Uhlenbeck semigroup in exterior domains. Arch. Math. (Basel), 85(6):554–562, 2005.

  • Haller, R., H. Heck und M. Hieber: Muckenhoupt weights and maximal L p - regularity. Arch. Math. (Basel), 81(4):422–430, 2003.

  • Heck, H. und M. Hieber: Maximal L p -regularity for elliptic operators with VMO-coefficients. J. Evol. Equ., 3(2):332–359, 2003.

  • Haller, R., H. Heck und A. Noll: Mikhlin’s theorem for operator-valued Fourier multipliers in n variables. Math. Nachr., 244:110–130, 2002.

Mitgliedschaften

Betreute Arbeiten

  • Lara Lauener, Vanessa Järmann Handylokalisierung mit Machine Learning 2024

  • Angelo Hinnaoui Qualitätsschätzung beim Laserschneiden mit Machine Learning 2024

  • Roman Beck Qualitätsschätzung beim Laserschneiden mit Machine Learning 2022

  • Simeon Bots, Bruno Stucki VisionAid 2021

  • Joël Gonseth Fahrzeugerkennung für die Smart Streetlight 2019

  • Jan Schafroth Fahrzeugerkennung mit einem 3D Radar 2017

  • Fabian Berger, Valentin Fischer Fahrzeugerkennung mit einer 3D Kamera 2017

  • Milan Andrejic, Luciano Stettler Colony Counter 2017

  • Daniel Luder, Benjamin Oehrli Längenmessung von Schlangen mittels Bildverabeitung 2015

  • Shadi Alhaj VisionAid 2021

  • Maxime Charrière Anomaly Detection in PV Systems 2024

  • Patrick Christen Tennis-Vision App 2020

Sprachen- und Länderkenntnisse

  • Deutsch - Muttersprache oder zweisprachig
  • Englisch - Fliessend
  • Französisch - Grundkenntnisse
  • Japanisch - Grundkenntnisse
  • Deutschland
  • Vereinigte Staaten von Amerika
  • Japan
  • Österreich