

Berner Fachhochschule Haute école spécialisée bernoise Bern University of Applied Sciences

Enhanced Physics-Based Models for State Estimation of Li-Ion Batteries

Master Thesis Presentation, August 19, 2020, MS Teams

Author: Daniel Luder

Advisor: Prof. Dr. Andrea Vezzini, Dr. Priscilla Caliandro

Expert: Dr. Corsin Battaglia (EMPA)

Bern University of Applied Sciences (BFH) | Energy Storage Research Centre (ESReC)

Motivation and Problem Description

Traditional (gasoline) vehicle

Battery Electric Vehicle (BEV)

Research Objectives

Implementation of a physics-based battery model

- Detailed representation of electrochemical reactions and phenomena allowing:
 - \blacktriangleright Control degradation processes \rightarrow prolong battery life
 - \blacktriangleright Calculate power limits \rightarrow optimal/fast charging applications
 - \blacktriangleright Accurate voltage simulation \rightarrow more precise state estimation
 - Meaningful state estimation

Parameter identification of a commercial lithium-ion battery
Simplification of the model towards implementation on an embedded system according to Model-Based Design (MBD)

Equivalent Circuit Models (ECMs)

Physics-Based Battery Models (PBMs)

Doyle-Fuller-Newman (DFN) battery model

Pseudo-2D physics-based battery model

Based on multiphase porous electrodes and concentrated solution theories
Governed by a set of coupled nonlinear Partial Differential Equations (PDE)
Charge/mass conservation in the homogeneous solid/liquid phase
Electrochemical kinetics described by the Butler-Volmer equation

- Li concentration in the solid phase $c_s(x, r, t)$
- Li concentration in the liquid phase $c_e(x, t)$
- Electric potential in the solid phase $\Phi_s(x, t)$
- Electric potential in the liquid phase $\Phi_e(x, t)$
 - Molar flux density at the solid/liquid interface j(x, t)

Sensitivity Analysis

QR decomposition with column pivoting

Identify the most sensitive parameter Scaling model parameters from literature

Linear, same order of magnitude Logarithmic, different order of magnitude

Sensitivity ranking	beta = 0.25	beta = 0.4	beta = 0.6	beta = 0.75	All betas
1st	rp_pos	rp_pos	Ds_pos	Ds_pos	rp_pos
2nd	rp_neg	eps_l_pos	rp_pos	i0ref_neg	Ds_pos
3th	Ds_pos	Ds_pos	Ds_neg	rp_pos	i0ref_neg
4th	i0ref_neg	rp_neg	i0ref_neg	i0ref_pos	rp_neg
5th	eps_l_neg	cl_0	De	eps_l_neg	eps_l_neg
6th	eps_l_pos	De	cl_0	De	i0ref_pos
7th	cl_0	t_plus	sigma_pos	eps_l_pos	eps_l_pos
8th	De	eps_l_neg	eps_l_neg	rp_neg	De
9th	Ds_neg	i0ref_pos	rp_neg	t_plus	Ds_neg
10th	i0ref_pos	i0ref_neg	eps_l_sep	Ds_neg	cl_0
11th	eps_l_sep	eps_l_sep	eps_l_pos	cl_0	t_plus
12th	sigma_pos	sigma_pos	i0ref_pos	sigma_pos	sigma_pos
13th	t_plus	Ds_neg	t_plus	eps_l_sep	eps_l_sep

Time-domain result

25

 $\beta = 0.4$

 $-\beta = 0.6$ $-\beta = 0.75$

 $\beta = 0.5$

Frequency-domain result

Zreal [mΩ]

Microstructure Analysis - Sample Preparation

Unrolled battery jelly roll

Cut battery jelly roll

Vacuum impregnation

Grinding machinePolishing machineBerner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences

Microstructure Analysis – Optical microscope Optical microscope

Optical microscope to measure the layer thickness

View of the jelly roll design

Microstructure Analysis – Scanning Electron Microscope (SEM) Scanning Electron Microscope (SEM)

Scanning Electron Microscope (SEM) used for the microstructure analysis

SEM image of the coated cathode material of the unrolled jelly roll

Microstructure Analysis - Scanning Electron Microscope (SEM)

Energy Dispersive X-Ray Spectroscopy (EDX)

Spectrum name	Ni [wt%]	Mn [wt%]	Co [wt%]	Total [wt%]
Spectrum 2	82.50	4.95	12.55	100
Spectrum 3	82.19	5.18	12.62	100
Spectrum 4	82.63	4.94	12.43	100
Spectrum 24	86.57	2.97	10.46	100
Spectrum 25	83.09	4.45	12.46	100
Spectrum 26	83.89	4.06	12.05	100
Spectrum 27	86.49	3.13	10.38	100

(a) Ni

(c) Co (d) Al EDX mapping analysis

Nickel-rich cathode (NMC811) Silicon graphite anode (SiC)

Microstructure Analysis – Image Processing Determine porosity and volume fraction of the positive electrode

Lecation	Active volume fraction							
Location	Threshold = 25%	Threshold = 50%	Threshold = 75%					
Sample 1 left	93.6%	85.8%	74.4%					
Sample 1 right	92.2%	83.8%	72.1%					
Sample 2 top	91.0%	81.8%	68.2%					
Sample2 bottom	93.4%	85.5%	72.9%					
Sample 3	93.7%	88.2%	75.7%					
Sample 4 top	91.3%	83.3%	68.7%					
Sample 4 bottom	89.4%	80.1%	64.3%					

Most likely active volume fraction

Otsu's multilevel binary threshold

Microstructure Analysis – Image Processing Determine the particle size of the positive electrode

Most likely particle radius

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences

operations

Lithium-Ion Battery Testing

Test setup

Cells in the temperature chamber

Cell tester ACT0550

Parameter Identification by Model Optimization

Determine the thermodynamic model parameters

Improved Galvanostatic Intermittent Titration Technique (GITT) test

Parameter Identification by Model Optimization

Determine the thermodynamic model parameters

Parameter Identification by Model Optimization

Determine the kinetic model parameters

$$\hat{\mathbf{p}} = \underset{\mathbf{p}}{\operatorname{argmin}} \left| |\mathbf{f}(\mathbf{p}, \mathbf{I}_{\mathsf{app}}(t))| \right| = \underset{\mathbf{p}}{\operatorname{argmin}} \left(\begin{bmatrix} f_1(\mathbf{p}, I_{1, \mathsf{app}}(t)) \\ f_2(\mathbf{p}, I_{2, \mathsf{app}}(t)) \\ \vdots \\ f_n(\mathbf{p}, I_{n, \mathsf{app}}(t)) \end{bmatrix} \right)^2$$

$$f_i(\mathbf{p}, I_{i,\mathsf{app}}(t)) = V_{\mathsf{model}}(\mathbf{p}, I_{i,\mathsf{app}}(t)) - V_{\mathsf{cell}}(\mathbf{p}, I_{i,\mathsf{app}}(t))$$

Doyle-Fuller-Newman (DFN) Model Validation

Constant Current (CC) discharge tests

- Li concentration in the solid phase $c_s(x, r, t)$
- Li concentration in the liquid phase $c_e(x, t)$
- Electric potential in the solid phase $\Phi_s(x, t)$

1C discharge

50

Solid potential [V]

0

0

- Electric potential in the liquid phase $\Phi_e(x, t)$
- Molar flux density at the solid/liquid interface j(x, t)

0.8

0.6 🖵

0.4 OOS

0.2

150

100

x-coordinate [um]

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences

-1.5

0

50

100

x-coordinate [um]

Electrolyte potential [V]

0

-0.5

1C discharge

Doyle-Fuller-Newman (DFN) Model Validation

Standardized Drive Cycles

Enhanced Self-Correcting battery model

Average RMSE (90% - 10% SOC): 22.2mV Average RMSE (90% - 20% SOC): 16.2mV

ng battery ents)	Drive Cycle	C-rate [C]	SOC [%]								
			90	80	70	60	50	40	30	20	10
	HWFET	2C	9.3	14.5	17.5	27.8	10.0	12.8	11.3	14.3	63.4
ecti em	NYCC	2C	16.8	17.2	17.8	20.2	16.8	17.4	16.8	17.7	26.4
lf-Corr (2RC el	UDDS	2C	11.3	15.4	16.1	29.7	13.1	14.5	14.3	18.5	51.2
	US06	2C	8.7	13.2	17.2	25.5	9.6	11.2	10.3	10.7	74.9
d Se del	HWFET	5C	12.2	10.4	14.4	15.4	10.3	8.8	8.6	25.1	137.0
Enhanceo moo	NYCC	5C	13.9	16.3	17.8	23.6	14.7	16.1	14.7	17.5	41.6
	UDDS	5C	9.9	11.3	14.8	25.4	9.4	10.4	9.6	11.5	94.0
	US06	5C	39.3	22.5	23.2	23.8	25.6	19.2	18.8	26.5	69.6

RMSE for the Enhanced Self-Correcting battery model in mV

Doyle-Fuller-Newman battery model

Average RMSE (90% - 10% SOC): 17.3mV Average RMSE (90% - 20% SOC): 11.4mV

	Drive Cycle	C-rate [C]	SOC [%]								
man I			90	80	70	60	50	40	30	20	10
	HWFET	2C	7.5	11.2	12.2	17.2	4.7	13.8	6.7	13.8	64.5
Vev ode	NYCC	2C	1.7	2.3	2.6	4.0	1.6	3.4	0.9	2.6	13.1
⁻ uller-h tery m	UDDS	2C	6.1	6.8	6.9	17.9	3.0	8.6	4.1	12.1	52.3
	US06	2C	10.5	15.5	16.8	15.9	7.1	17.1	7.9	14.8	74.3
/le-l bat	HWFET	5C	6.3	26.0	15.7	8.9	19.1	24.4	8.9	13.5	142.9
Do	NYCC	5C	4.3	5.4	7.1	11.8	2.5	7.2	2.8	6.9	33.8
	UDDS	5C	18.1	16.0	12.9	11.2	7.9	17.2	11.9	16.2	95.0
	US06	5C	21.7	27.9	15.8	9.2	37.1	21.7	10.3	23.8	43.5

RMSE for the Doyle-Fuller-Newman battery model in mV

Simplification of the Doyle-Fuller-Newman (DFN) battery model

 $C_{s,p}(r,t)$

(+

- Partial Differential Equation (PDEs)
- Computational complex

Doyle-Fuller-Newman (DFN)

Approximates the solid phase of each electrode with a single spherical particle

.....

.....

. . . .

...

. . . .

TITLE

.....

- Approximate microscale diffusion inside porous electrodes by a polynomial
- Apply volume averaging methods

 $\frac{\mathrm{d}}{\mathrm{d}t}\overline{c}_s(t)$

 $\frac{\mathrm{d}}{\mathrm{d}t}\overline{q}_s(t)$

 $\frac{\mathrm{d}}{\mathrm{d}t}\overline{c}_e(t)$

 $c_{ss}(t)$

- Discretization
 - Implementation as state-space model

 $\dot{x} = Ax + Bu$ y = f(u, x)

Single Particle Model (SPM) with electrolyte dynamics

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences

 $c_{s,n}(r,t)$

(-)

Single Particle Model (SPM) Validation

Implementation on an Embedded System Model-Based Design (MBD)

Implementation on an Embedded System

Combination of the battery model and Extended Kalman Filter (EKF)

Results of Algorithm Validation Hardware in the Loop (HIL)

Conclusions

Successful implementation of a physics-based battery model.

- Parameter identification of a commercial Li-ion battery.
- Further improvements of the SPM with electrolyte dynamics are necessary.
- Achieved model accuracy is comparable with publications from 2018.

► High demands on batteries and Battery Management Systems (BMS) in Battery Electric Vehicles (BEV) regarding performance, range and safety.

Physics-based battery models are expected to become the key technology in advanced BMS due to their ability to estimate electrochemical states and thus allow fast charging and control degradation processes to maximize battery life.